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Human HsRad51 protein assembles on a DNA molecule through cooperative binding
and forms a long filament for homologous recombination. We have characterized the
self-assembly of HsRad51 by measuring the fluorescence resonance energy transfer
from the fluorescein-labeled protein to the rhodamine-labeled protein. Self-assembly
quickly reached equilibrium and can be described by the head-to-tail polymerization
of monomers, like that of its procaryotic homologue, RecA. It depended strongly on
pH and was inhibited by high salt concentrations, indicating that ionic interactions
between negatively and positively charged aminoacid residues are important. By
contrast, neither ATP nor ADP significantly affected the reaction.

Key words: fluorescence resonance energy transfer, homologous recombination, pro-
tein self-assembly, Rad51 protein.

Abbreviations: FITC, fluorescein 5-isothiocyanate; RITC, rhodamine B 5-isothiocyanate; FRET, fluorescence reso-
nance energy transfer.

The protein Rad51 is one of a widely distributed group of
eukaryotic homologues of the procaryote RecA protein
(1). They are found in species as different as yeast and
man (2), and are involved in homologous recombination
and recombinational repair (3). Rad51 interacts with the
breast cancer suppressors BRCA1 and BRCA2 (4–6), and
with another tumor suppressor, p53 (7). It is thus impor-
tant for DNA repair and defense against tumor forma-
tion. It is also required for normal development of the
mouse embryo (8, 9). Mammalian cells lacking Rad51
undergo apoptosis.

Rad51, like Escherichia coli RecA, catalyzes the
exchange of strands between homologous DNA molecules
in vitro in the presence of ATP, although Rad51 catalyses
the reaction less efficiently than RecA and requires other
proteins for optimal activity (10–17). Rad51 forms a fila-
mentous complex with DNA; the structure of this com-
plex is similar to that of the RecA-DNA complex (18, 19).
Rad51 monomers form a helical filament (about 6 subu-
nits per turn) around the DNA. Both Rad51 and RecA
also undergo self-assembly to form helical filaments in
the absence of DNA (20–22). The filaments of Rad51 and
RecA are stretched by the nucleotide cofactor, ATP,
increasing the pitch of the helix (21, 22). This similarity
between RecA and Rad51 suggests that filament forma-
tion is important for their activities. RecA mutants that
cannot undergo self-assembly cannot catalyze strand
exchange (23). Furthermore, determination of the self-
assembly of the protein is necessary for analysis of its

We have characterized this self-assembly of human
HsRad51 by measuring the fluorescence resonance energy
transfer (FRET) from fluorescein-labeled HsRad51 to
rhodamine-labeled HsRad51. We examined the effects of
pH and salt to clarify the nature of the contact between
the subunits, and the effects of ATP and ADP.

MATERIALS AND METHODS

Purification of Recombinant HsRad51 Protein—
HsRad51 was produced in E. coli strain BL21(DE3) har-
boring pET-hsRad51 (kind gift from Dr. A. Shinohara).
The bacteria were grown with ampicillin (0.1 mg/ml) at
37�C in LB medium. Isopropyl-�-D-thiogalactopyranoside
(IPTG) (final concentration: 0.5 mM) was added when the
turbidity at 600 nm reached 0.3–0.6, and the bacteria
were incubated for a further 10–12 h at 25�C to induce
Rad51 production. The bacteria were then harvested by
centrifugation and suspended in 20 mM Tris-HCl, pH
7.4, 200 mM NaCl, 2 mM dithiothreitol, 1 mM EDTA, 1
mM phenylmethylsulfonyl fluoride, and 25% sucrose.

The cells were processed twice in a French Press at
20,000 psi. All subsequent purification procedures were
performed at 4�C. Polyethylenimine (Sigma) (0.1% final)
was added to the resulting cell extract and the precipi-
tate was removed by centrifugation at 30,000 �g for 30
min. Ammonium sulfate (33% saturation final) was
added to the supernatant under continuous stirring. The
pellet was collected by centrifugation at 30,000 �g for 30
min, dissolved in 20 mM Tris-HCl, pH 8.0, 50 mM NaCl
and 10% glycerol, and then loaded onto a Q-Sepharose
(Amersham Pharmacia Biotech) column. HsRad51 was
eluted with a linear gradient of NaCl (50–600 mM). The
fractions containing HsRad51 were collected and loaded
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onto a hydroxyapatite column (Bio-Gel HTP, BioRad).
HsRad51 was eluted with a linear gradient of sodium
phosphate (0–500 mM), pH 7.0, in 20 mM Tris-HCl, pH
8.0, 50 mM NaCl, and 10% glycerol. HsRad51 was precip-
itated by adding ammonium sulfate (50% saturation).
The pellet was collected by centrifugation, dissolved in 20
mM Tris-HCl, pH 8.0, 50 mM NaCl, 2 mM DTT and 10%
glycerol, and then dialyzed against 20 mM Tris-HCl, pH
8.0, 50 mM NaCl, and 50% glycerol. The resulting protein
was stored at –80�C. It was over 95% pure, as judged on
SDS–polyacrylamide gel electrophoresis.

Preparation of Fluorescein- and Rhodamin-Labeled
HsRad51—HsRad51 was labeled with fluorescein or
rhodamine by reaction with FITC or RITC (Sigma) (25).
FITC or RITC was dissolved (20 mM) in N,N-dimethylfor-
mamide, and then added (5 �M final) to HsRad51 (2–3
�M) in 50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 5 mM
MgCl2, and 1 mM EDTA. The mixture was incubated for 1
h at 25�C in the dark. Excess FITC or RITC was removed
by dialysis against the same buffer for 3 h at 4�C.

Fluorescence Measurements—Fluorescence was meas-
ured with a FR-7500 spectrofluorometer (Jasco). Emis-
sion spectra were measured (bandwidths: 3 nm for the
experiments at pH 7.4, and 5 nm for those at other pHs)
with the selective excitation of fluorescein at 450 nm
(band width: 3 nm). The spectra were measured more
than twice to ensure the absence of photobleaching and
averaged to increase the signal/noise ratio. The spectra
were corrected for background and Raman scattering by
subtracting the buffer signal. All experiments were per-
formed at 25�C using Hepes/NaOH buffer for the experi-
ments at pH 7.4, PIPES/NaOH for pH 6.5 and 6.0, and
sodium acetate for pH 5.5, 5.0, and 4.5. The buffer con-
centrations were 50 mM, and the solutions usually con-
tained 50 mM NaCl and 1 mM MgCl2.

Molecular Sieve Chromatography—Unmodified and
modified HsRad51 (20 �g in 20 �l) were chromatographed
on Sephadex G-75 (Amersham Pharmacia) (6 cm � 0.4 cm
column) in either 50 mM PIPES-NaOH, pH 6.0, 50 mM
NaCl, and 1mM MgCl2 (panel A), or 50 mM Tris-HCl, pH
7.5, 500 mM NaCl, and 1 mM MgCl2 (panel B) to examine
their self-assembly. Elution drops (52 � 1 �l for the low
salt buffer and 55 � 1 �l for the high salt buffer) were col-
lected and their protein contents determined (Bio-Rad
Protein Assay). Aliquots (20 �l) of each fraction were
added to 150 �l of 1/5 diluted Protein Assay solution, and
then the absorption at 595 nm was measured.

Other Materials—Fluorescein-labeled oligo(dT), 36 bases
long, was obtained from Genset and used without further
purification. Fluorescein was attached to the 5� end of the
oligonucleotide. ATP and ADP were from Sigma, and
their stock solutions were brought to pH 7 with NaOH.

RESULTS

Detection of HsRad51 Self-Assembly by FRET—To
avoid inactivation of the protein on labeling, we per-
formed the modification with a low concentration of
organic solvent (N,N-dimethylformamide) and limited
the modification to about one fluorescent probe attached
to one protein subunit on average. The degree of modifi-
cation was verified by absorption spectra of fluorescein-

labeled and rhodamine-labeled HsRad51. The labeled
proteins actively bound to DNA and underwent self-
assembly. The binding of DNA to modified and unmodi-
fied proteins was studied using fluorescein-labeled
oligo(dT)36 as a DNA. The binding of the rhodamine-
labeled protein was analyzed by FRET from the fluores-
cein probe of the oligonucleotide to the rhodamine label of
the protein, while the binding of DNA to the unmodified
protein was monitored as the change in fluorescence ani-
sotropy of fluorescein-labeled oligo(dT)36 (26). The titra-
tion of fluorescein-labeled oligo(dT)36 by the labeled and
unlabeled HsRad51 was very similar, with a binding stoi-
chiometry of about 6 bases of DNA/protein monomer (not
shown). The self-assembly of labeled and unlabeled
HsRad51 was examined by molecular sieve chromatogra-
phy. Both modified and unmodified HsRad51 were eluted
in the void volume with low salt and low pH (50 mM
PIPES-NaOH, pH 6.0, 50 mM NaCl, and 1mM MgCl2)
(Fig. 1A), indicating that they underwent self-assembly
to form oligomers. By contrast, both proteins were eluted
mainly as monomers with high salt and neutral pH (50
mM Tris-HCl, pH 7.5, 500 mM NaCl, and 1 mM MgCl2)
(Fig. 1B). The labeling had no effect on self-assembly.

The fluorescence emission of a mixture of 8 �M fluores-
cein-labeled HsRad51 and 8 �M rhodamine-labeled
HsRad51 differed from that of 8 �M fluorescein-labeled
HsRad51 alone, although rhodamine-labeled HsRad51
alone did not significantly fluoresce under our experi-
mental conditions (Fig. 2). The mixture gave a less
intense emission peak at 520 nm (the fluorescence of flu-
orescein) than the fluorescein-labeled protein alone, and
a second peak at 575 nm (the fluorescence of rhodamine).

Fig. 1. Self-assembly of modified and unmodified HsRad51.
The elution patterns of fluorescein-labeled (closed circles), rhodam-
ine-labeled (closed triangles), and unlabeled (open squares)
HsRad51 from Sephadex G-75 with low (panel A) and high salt
(panel B) are shown, plus the positions of the BSA (66 kDa) and lys-
ozyme (14 kDa) elution peaks.
J. Biochem.
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There was clear FRET from the fluorescein-labeled
HsRad51 to the rhodamine-labeled HsRad51, reflecting
their interaction. The FRET appeared immediately after
they were mixed and remained unchanged for 20 min-
utes, indicating that the association occurred quickly.
The FRET, judged as the ratio of the fluorescence intensi-
ties at 575 nm and 520 nm (F575/F520), became lower when
samples were diluted with buffer (Fig. 2B). This depend-
ence of FRET on the protein concentration further indi-
cates that the FRET is linked to the self-assembly of
HsRad51. FRET decreased quickly after dilution, indi-
cating that the oligomers also dissociated rapidly.

This dependence of FRET on the protein concentration
was quantified using a head-to-tail polymerization model
(24), because the Rad51 filament, like the RecA one, is
polar (27):

where An is the n-mer of HsRad51 and Kn is the associa-
tion constant for the binding of a monomer to an n-mer to
form (n+1)-mer HsRad51. Kn = Kn–1 * �n–1, with � being
cooperativity. Self-assembly can occur through contact
between two protein subunits that are labeled with the
same fluorescence probe. This does not promote any
FRET and could complicate analysis. We mixed a 4-fold
excess of the rhodamine-labeled protein with the fluores-
cein-labeled protein to minimize this effect. We also
assumed that the efficiency of FRET was not affected by
the binding of a second rhodamine-labeled protein. The
FRET between the subunits that were not direct neigh-
bors was neglected because the distance between them
should be greater than 6 nm according to the structure of
the helical filament of Rad51 indicated by electron micro-
copy and small-angle-neutron-scattering (18, 19, 22).

The fraction of the fluorescein-labeled protein in con-
tact with the rhodamine-labeled protein was determined
from the ratio of the intensity of the rhodamine signal at
575 nm (F575) to that of fluorescein at 520 nm (F520), with
the relationship:

Fraction of protein in contact = (r – r0)/(rmax – r0),

where r = F575/F520 , r0 is this ratio in the absence of the
rhodamine-labeled protein, and rmax is the value expected
with a saturating amount of the rhodamine-labeled pro-
tein. Since the fluorescein fluorescence depended upon
pH, rmax were estimated for each pH by extrapolation of 1/
r vs. 1/[protein] plots. The FRET was estimated more
accurately from the ratios than from the changes in
intensity of either fluorescein (F520) or rhodamine (F575)
fluorescence. All the experiments were repeated at least
twice and the results were averaged. The precision was
better than 10%.

The head-to-tail polymerization model predicts that
the fraction of protein in contact is � [K1 * �i–1 * [Ai] * (i +
1)]/(1 + � [K1 * �i–1 * [Ai] * (i + 1)]) at a total protein con-
centration of (1 + � [K1 * �i–1 * [Ai] * (i + 1)]) * [A1], with
[A1] being the concentration of monomer. The simulation
analysis showed that the cooperativity, �,  has little effect
on the theoretical curves. This probably reflects the fact
that the FRET occurs with the formation of dimers, the
first step of self-assembly. However, weak cooperativity
(� = 0.8) can still be detected, if it is present (Fig. 2B). The
intrinsic association constant K1 is linked to the concen-
tration of protein required for half effect and can be accu-
rately determined. The experimental data obtained at pH
5.5 fitted this model very nicely, with K1 = 0.7 (�0.2) � 106

M–1 and � = 1 (�0.2) (Fig. 2B). The ratio of rhodamine-
labeled protein/fluorescein-labeled protein did not signif-
icantly affect the result (not shown).

Effects of pH and Salt on HsRad51 Self-Assembly—
The degree of FRET, expressed as the F575/F520 ratio,
increased with the protein concentration, but did not
reach a plateau even at 20 �M HsRad51 at pH 7.4 (Fig.
2B). By contrast, the value was very high at pH 4.5, even
with low protein concentrations, and almost plateaued at
1 µM. The pH affected the association constant, but all
the data could be fitted nicely by the head-to-tail self-

Fig. 2. Protein concentration and pH dependent self-assem-
bly of HsRad51. Panel A: The emission spectra of 8 �M fluores-
cein-labeled HsRad51 with (broken line) and without (continuous
line) 8 �M rhodamine-labeled HsRad51, plus the spectrum of 8 �M
rhodamine-labeled HsRad51 alone (dots) at pH 5.5. Panel B: The
fractions of the fluorescein-labeled protein in contact with the rhod-
amine-labeled protein were computed from the FRET (r = F575/F520),
as described in the text, with various concentrations of HsRad51 at
pH 7.4 (solid circles), pH 6.5 (open circles), pH 6.0 (solid squares),
pH 5.5 (open square), pH 5.0 (�), and pH 4.5 (open trianbles). Theo-
retical curves were computed with � = 1 and K1 = 50, 30, 0.7, 0.07,
0.03, and 0.025 � 106 M–1for the data at pH 4.5, 5, 5.5, 6, 6.5, and 7,
respectively. For the data at pH5.5, the curve with � = 0.8 is also
computed (broken line)

A1 	 A2 	 A3 	 A4 ... An–1 	 An 	 An+1 ...
K1 K2 K3 Kn Kn+1
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assembly model, with � = 1 (Fig. 2B). The association
constant changed markedly between pH 5 and 6 (Figs. 2B
and 3). This large change over a narrow pH range indi-
cates that the protonation of a chemical group is impor-
tant for the reaction. The results can be analyzed (Fig. 3)
by assuming that the protonation of one residue with pKa
= 5.3 increases the association constant K1 from 2.5 � 104

to 5.0 � 107 M–1.
The self-assembly of HsRad51 was also affected by the

salt concentration (Fig. 4). The association constant
decreased markedly (10-fold) when the NaCl concentra-
tion was increased from 50 to 150 mM (Fig. 4A), indicat-
ing that an ionic interaction between the subunits is
involved in oligomer formation. However, a further
increase in the NaCl concentration from 150 to 500 mM
had less effect on self-assembly (2-fold decrease). The
ionic interactions may be offset by hydrophobic interac-
tions, as in RecA. Some hydrophobic interactions may be
involved in the contact between subunits. The effects of
salt at pH 5.5 (Fig. 4A) and pH 6.5 were similar (Fig. 4B).

Effects of ATP and ADP on HsRad51 Self-Assembly—
Adding ATP or ADP to the mixture of fluorescein- and
rhodamine-labeled HsRad51 did not affect the FRET at
either pH 6.5 or pH 5.5 (not shown). The results were also
similar with a high salt concentration (0.5 M NaCl). The
thermodynamic parameters of self-assembly of the
HsRad51 protein were not significantly affected by the
binding of ATP or ADP.

DISCUSSION

We have used FRET measurements to analyze the self-
assembly of HsRad51 and to demonstrate its head-to-tail
organization. We have precisely determined the equilib-
rium constants for the self-assembly of Rad51, This
determination is required for analysis of the real DNA
binding character of Rad51 because the self-assembly
affects the DNA binding, as demonstrated for RecA (24).
Without analyzing the self-assembly, it would be impossi-
ble to determine whether the effects of ATP and ADP on
the DNA binding to Rad51 (28) are due to the change in
self-assembly or to their direct effect on DNA binding.
Our observation that the nucleotides do not affect the
Rad51 self-assembly association constant therefore indi-

cates that these nucleotides directly affect the binding of
DNA to Rad51.

Our results also indicate that both ionic and hydropho-
bic interactions between the subunits contribute to the
self-assembly of Rad51, as they do to that of RecA (24,
29). Crystallographic and mutation analyses of RecA
have shown that the RecA filament is formed through
contact between the positively charged N-terminal part
of one molecule and the cluster of negatively charged res-
idues around residue 125 of another (30, 31). We have
therefore looked for similarity between the N-terminal
parts of HsRad51 and RecA. But HsRad51 has no cluster
of positively charged residues in its N-terminal segment
and there is no apparent similarity between their
sequences (2). Furthermore, the N-terminal part of
Rad51 is considered to interact with DNA (32). The
assembly of Rad51 may be different from that of RecA,
despite their overall similarity.

The strong pH dependency of Rad51 self-assembly sug-
gests some conformation change of Rad51 depending on
pH. Our CD measurements support this conclusion show-
ing a significant change in the secondary structure of the
protein: a helical structure is decreased at lower pH. We
can speculate that the interaction of Rad51 with another
protein (4–7, 13, 15) or its phosphorylation (33) intro-
duces such a conformation change or facilitates the proto-
nation of residues important for the self-assembly and
thus activates Rad51.

Our study also shows how useful FRET measurements
are for analyzing the self-assembly of proteins. The
method complements the light scattering measurements
used to study the self-assembly of RecA (24, 29, 34).
FRET occurs with the formation of dimers, so it mainly

Fig. 3. Effect of pH on HsRad51self-assembly. The association
constants for HsRad51 self-assembly were determined at various
pHs, and analyzed assuming that the protonation of one residue of
protein increases the association constant.

Fig. 4. Effect of salt on HsRad51 self-assembly. The changes in
FRET (r = F575/F520, see the text) with the HsRad51 concentration
were measured in the presence of 0.05 M (solid circles), 0.15 M
(open squares), and 0.5 M (solid triangles) NaCl at pH 5.5 (panel A)
and 6.5 (panel B).
J. Biochem.
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provides information about the first step (dimerization)
of self-assembly. In contrast, light scattering detects
large oligomers more easily than dimmers, and provides
information about the global state of self-assembly rather
than the first step. FRET measurements can also provide
information about the kinetics of association and dissoci-
ation. Rad51 quickly associates to form oligomers, which
in turn dissociate rapidly.
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